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ABSTRACT

Motivation: Mutual information (MI) theory is often applied to
predict positional correlations in a multiple sequence alignment
(MSA) to make possible the analysis of those positions structurally
or functionally important in a given fold or protein family. Accurate
identification of coevolving positions in protein sequences is difficult
due to the high background signal imposed by phylogeny and noise.
Several methods have been proposed using MI to identify coevolving
amino acids in protein families.
Results: After evaluating two current methods, we demonstrate
how the use of sequence-weighting techniques to reduce sequence
redundancy and low-count corrections to account for small number
of observations in limited size sequence families, can significantly
improve the predictability of MI. The evaluation is made on large
sets of both in silico-generated alignments as well as on biological
sequence data. The methods included in the analysis are the
APC (average product correction) and RCW (row–column weighting)
methods. The best performing method was APC including sequence-
weighting and low-count corrections. The use of sequence-
permutations to calculate a MI rescaling is shown to significantly
improve the prediction accuracy and allows for direct comparison of
information values across protein families. Finally, we demonstrate
how a lower bound of 400 sequences <62% identical is needed
in an MSA in order to achieve meaningful predictive performances.
With our contribution, we achieve a noteworthy improvement
on the current procedures to determine coevolution and residue
contacts, and we believe that this will have potential impacts on the
understanding of protein structure, function and folding.
Contact: cmb@qb.ffyb.uba.ar; mniel@cbs.dtu.dk

1 INTRODUCTION
Multiple sequence alignments (MSAs) of homologous proteins
carry at least two levels of information. One is given by the
amino acid conservation at each position in the protein sequence
and the second is given by the inter-relationship between two or
more positions. While the first type of information is relatively

∗To whom correspondence should be addressed.

straightforward to calculate and interpret, the second type is more
complex. Mutations at essential residues in a protein sequence may
occur only if a compensatory mutation elsewhere in the protein
takes place to preserve or restore the activity (Martin et al., 2005).
As stated by DePristo et al. (2005) (and references therein), the
frequency of compensatory mutations is very high, and involves
not only functional but also biophysical properties like stability and
tendency to aggregation. The extent of the mutual coevolutionary
relationship between two positions in a protein family can be
estimated using mutual information (MI) from information theory
(Cover and Thomas, 1991; Gloor et al., 2005; Martin et al., 2005;
Tillier and Lui, 2003). Even though in principle the calculation of
MI is simple, its interpretation has been demonstrated to be very
difficult and different approaches have been tested to benefit from
that information (Chiu and Kolodziejczak, 1991; Cover and Thomas,
1991; Dunn et al., 2008; Gouveia-Oliveira and Pedersen, 2007;
Korber et al., 1993; Shackelford and Karplus, 2007; Wollenberg
and Atchley, 2000).

The problem faced when correlating MI values obtained from
biological data to the extent of coevolution lies in the fact that
protein sequences are not independent, but have an inherent signal
defined by their evolutionary relationship. This has nicely been
demonstrated in the work by Gouveia-Oliveira and Pedersen (2007)
where they show how sequences that are related through a tree-
formed history can result in a covariance signal that resembles
coevolution. Likewise, it has been shown that the degree of
sequence conservation of two positions correlates strongly with
their estimated amount of MI (Fodor and Aldrich, 2004; Martin
et al., 2005). To deal with these difficulties, a number of different
approaches have been proposed to lower this high background
signal imposed by phylogeny and noise, enabling more accurate
identification of coevolving positions in protein sequences. A recent
paper by Dunn et al. (2008) gives a detailed introduction to the
field describing these different methods. However, no paper has
compared the accuracy of these methods. Here, we perform such a
benchmark calculation. We compare the predictive accuracy of the
APC (average product correction) method proposed by Dunn et al.
(2008), and the RCW (Row–column weighting) method proposed by
Gouveia-Oliveira and Pedersen (2007) on a large set of both artificial
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and biological data. We demonstrate that both methods as well as
the raw MI calculation can be significantly improved by including
(i) sequence-clustering techniques to reduce sequence redundancy,
and (ii) low count corrections to account for small number of
observations in limited size sequence families. Further, we show
how the use of sequence permutations can be applied to perform a
MI rescaling to allow for a direct comparison of information values
across protein families.

The software is written in C, it is fast and suitable to analyze a
large number of sequences.

2 METHODS

2.1 Data
2.1.1 Artificial data We use two datasets (where clustering and one-by-
one refer to the model of evolution) constructed by Gouveia-Oliveira and
Pedersen (2007). Each dataset consists of a collection of 100 MSA of length
300 amino acids. Twenty amino acid pairs are simulated to coevolve, and the
remaining 44 830 pairs evolve independently. The size of the MSA includes
32, 64 and 256 sequences and the rates of evolution are set to 1 and 3, where 1
is the fastest. Details on the dataset are given in the work by Gouveia-Oliveira
and Pedersen (2007). The datasets are available online at: http://www.cbs.
dtu.dk/services/InterMap3D/Coevolution_Benchmarking_datasets.zip.

2.1.2 Biological data Three sets of biological data were used. One set
consisted of 83 MSA constructed by Dunn et al. (2008). Each family in
this dataset is very small, containing on average 222 protein sequences per
family. Another set consisted of 85 Pfam families. The 85 Pfam families
were selected from Pfam release November 2008 with >2000 sequences per
family, at least one PDB entry each, and an alignment length >150 amino
acids. Families were included only if the number of columns in the MSA with
<50% gaps were 50 or more. The last set consisted of five protein families,
randomly chosen with no previous knowledge of the sequence coverage.
The only condition was to have a sample of each of the four major SCOP
protein classes (all α, all β,α +β and α/β) and that the family should have
at least one member with known 3D structure. The alignment of the chosen
families was obtained after a Blast search with the proteins: 2TRX, 1O1N,
1URE, 1BMC and 1JWP used as seeds. For each sequence seed, an MSA
with its homologs was prepared by scanning the non redundant (nr) protein
sequence database at NCBI (August 2008) with the program PSI-BLAST,
version 2.2.18 (Altschul et al., 1997) The scanning was performed without
filtering compositionally biased segments, running three Blast iterations
and E-value threshold equal to 0.001. Default values were used for all the
other parameters. This last small dataset would illustrate the applicability of
the method for the non-expert user that does not have the skill to prepare
high accuracy MSA using advanced bioinformatics tools like hidden mark
models etc.

In all cases MSAs were gap trimmed to remove positions with gaps in
the seed sequence. In addition, all positions with >50% gaps, as well as
sequences covering <50% of the seed sequence length were removed. Unlike
other methods, with this procedure we allow gaps to occur.

2.2 The algorithm
The MI between two positions in an MSA is given by the relationship:

MI(i,j)=
∑
a,b

P(ai,bj) ·log

(
P(ai,bj)

P(ai)·P(bj)

)
(1)

where P(ai,bj) is the frequency of amino acid a occurring at position i
and amino acid b occurring at position j in the same sequence, P(ai) is the
frequency of amino acid aat position i and P(bj) is the frequency of amino
acid b at position j. We introduced a very simple correction for low number of
sequences. The amino acid frequencies, P(a,b), are normalized from N(a,b),

the number of times an amino acid pair (a,b) is observed at positions i and
j in the MSA. From N(ai,bi),P(ai,bj) is calculated as (λ+N(ai,bj)))/N ,
where:

N =
∑
a,b

(λ+N(a,b)),P(ai)=
∑

b

P(ai,bj) and P(bj)=
∑

a

P(ai,bj)

It is clear that for MSAs of limited size, a large fraction of the P(ai,bj)
values will be estimated from a very low number of observations, and their
contribution to MI could be highly noisy. To deal with such low counts, a
parameter λ is introduced. The initial value for the variable N(ai,bj) = λ

is set for all amino acid pairs. Only for MSAs with a small number of
sequences, where a large fraction of amino acid pairs remain unobserved,
will λ influence the amino acids occupancy calculation. For large MSAs,
most amino acid pairs will be observed at least once, and the influence of λ

will be minor. We investigated how the performance depended on the values
used for λ on a small independent dataset. We tested a range of values 0–0.2
in steps of 0.01. The maximal performance was achieved for a value of λ

equal to 0.05, but similar results are obtained in the range 0.025–0.075. This
value was consistently found to be optimal for all datasets independently
of size, evolutionary model, or rate of evolution (data not shown).When
dealing with biological data, MSAs will often suffer from a high degree
of unnatural sequence redundancy. It is hence expected that the sequence
clustering would improve the accuracy of the MI calculation. We employed
a Hobohm 1 algorithm (Hobohm et al., 1992) to define sequence clusters, and
assign each sequence within a given cluster a weight corresponding to one
divided by the number of sequences in the cluster. Clusters were defined at a
sequence identity threshold of 62% (Shackelford and Karplus, 2007). Earlier
work by us has demonstrated that this threshold is also optimal when using
a Gibbs sampler approach to identify the motif for MHC class II binding
(Nielsen et al., 2004). The performance remains stable for threshold values
in the range 40–75%. When accumulating the amino acid concurrencies, the
sequence weight, rather that the value one, was used.

Several methods have been suggested to correct for an inherent property
of MI, namely, that the MI value between two residues depends strongly
on the conservation or entropy of the two residues. In this work, we apply
two recent methods suggested to deal with this problem. One such method,
named RCW, was proposed by Gouveia-Oliveira and Pedersen (2007). This
method divides all MI values by the average MI value of the two residues:

RCW = MIij

(MIi..MI.j/2)

where MIi. is the average of the MI value of residue i to all other residues
in the MSA. The other method, proposed by Dunn et al. (2008), defines an
APC, and subtracts this value from MI:

APCij =MIij − MIi..MI.j
MI..

where MIi−as before—is the average MI value of residue i to all other
residues in the MSA, and MI.. is the average MI value over all pairs of
residues in the MSA.

2.3 Z-scores
In a Z-score transformation, all prediction scores are compared with a
distribution of prediction scores obtained from a large set of randomized
MSAs. The Z-score is then calculated as the number of standard deviations
that the observed MI value falls above the mean value obtained from
the randomized MSAs. Two procedures for permutation were tested,
one column-based and one sequence-based. The first approach tests the
hypothesis that the sequences are homologous and correctly aligned, but that
the columns are not correlated, whereas the latter tests the hypothesis that the
sequences are not homologous. It was hence a priori expected that the first
approach would be most suited for the analysis of MI between columns of the
MSA. The permutations were made with gaps fixed in their original positions
and boundaries. The background mean and SD values were estimated from

1126

http://www.cbs


[10:28 26/3/2009 Bioinformatics-btp135.tex] Page: 1127 1125–1131

Identification of coevolving amino acid pairs using MI

Table 1. Predicted performance values in terms the AUC of the different
tested methods and the applied clustering and low count corrections with the
artificial dataset

Method 32Kme 32Ind 64Kme 64Ind 256Kme 256Ind

Benchmark using the dataset with rate of evolution 1
MI 0.597 0.647 0.603 0.663 0.661 0.717
MI-C 0.598 0.647 0.604 0.664 0.661 0.716
MI-Lc 0.757 0.816 0.753 0.817 0.740 0.808
MI-C-Lc 0.792 0.865 0.797 0.863 0.788 0.850
RCW 0.653 0.719 0.660 0.743 0.707 0.798
RCW-C 0.653 0.719 0.661 0.744 0.707 0.796
RCW-Lc 0.774 0.841 0.788 0.861 0.802 0.885
RCW-C-Lc 0.787 0.862 0.811 0.885 0.834 0.912
APC 0.710 0.843 0.768 0.885 0.850 0.943
APC-C 0.709 0.842 0.767 0.885 0.851 0.943
APC-Lc 0.783 0.863 0.821 0.908 0.897 0.967
APC-C-Lc 0.779 0.857 0.816 0.901 0.895 0.965
Benchmark using the dataset with rate of evolution 3
MI 0.635 0.784 0.664 0.833 0.765 0.949
MI-C 0.635 0.784 0.664 0.833 0.764 0.949
MI-Lc 0.808 0.958 0.814 0.957 0.842 0.986
MI-C-Lc 0.851 0.998 0.863 0.994 0.880 0.997
RCW 0.712 0.928 0.747 0.965 0.840 0.998
RCW-C 0.712 0.928 0.747 0.965 0.839 0.998
RCW-Lc 0.830 0.989 0.857 0.996 0.906 1.000
RCW-C-Lc 0.846 0.999 0.878 1.000 0.927 1.000
APC 0.799 0.967 0.869 0.990 0.952 1.000
APC-C 0.797 0.967 0.868 0.990 0.952 1.000
APC-Lc 0.842 0.997 0.889 1.000 0.965 1.000
APC-C-Lc 0.837 0.998 0.882 1.000 0.961 1.000

The upper panel gives the AUC values for the fast evolving data, and the lower panel, the
results for the slower evolving data. Kme refers to the cluster model of evolution, and Ind
refers to the one-by-one model of evolution. The numbers before the model of evolution
give the number of sequences in each alignment: 32, 64 and 256, respectively. The
methods included in the benchmark are: MI, C is clustering, Lc is low count correction
with λ = 0.05, RCW and APC. The best performing method for each benchmark dataset
is highlighted in bold.

100 such randomizations. It should be noted that sequence-based Z-score
does not test for the appropriated null hypothesis (the columns not being
correlated), and that sequence-based Z-score hence should be interpreted
only as an additional prediction score.

3 RESULTS

3.1 Artificial data
We first tested our method on the artificial data constructed by
Gouveia-Oliveira and Pedersen (2007). The predictive performance
of the different methods was evaluated in terms of the area under the
receiver operating characteristic (ROC) curve (AUC) (Swets, 1988).
An AUC value of one indicates a perfect prediction and a value of
0.5 a random prediction. The result of the experiment is shown in
Table 1.

From Table 1 it is clear that clustering and low count correction
improve the accuracy of all three prediction methods. In particular,
the performance for the raw MI method does improve dramatically
from being close to random to produce highly significant predictions.
It is apparent from the results that the clustering does not have any
strong influence on the predictive performance for these datasets.

This is to be expected, since the artificial MSAs contain very little
sequence redundancy. For the small datasets (Kme32, and Ind32),
all three methods achieve similar predictive performances when
including clustering and correction for low count. On the other
hand, for the large datasets with 256 sequences in the MSA, the
APC method combined with low count correction (and sequence
clustering) significantly outperforms both other methods (P < 0.001,
binomial test).

3.2 What is the function of low count corrections?
One might ask how the highly simple approach correcting for low
counts introduced in this work can have so strong an influence on
the predictability of coevolving residue pairs. From Equation (1)—
that defines the MI between two sites in an MSA—it is apparent
that diversity is essential to achieve high MI values. Only if all
amino acids are present in equal frequencies between two perfectly
coevolving pairs will the MI achieve its maximum value. This leads
to the observation that fast evolving sites tend to have high values
of MI albeit being non-coevolving (Gouveia-Oliveira and Pedersen,
2007). Likewise, slowly evolving sites will only occupy a small
fraction of the amino acid space, and hence tend to have low MI
values. The extreme case is perfectly conserved amino acids that
will always have a MI value of zero. By introducing a correction
for low count this behavior is altered. This can be illustrated taking
an example from the artificial dataset 32Kme1. This dataset is of
limited size, and the use of low count corrections was shown to
greatly improve the predictability of coevolving residues. In the
dataset 4 of the 32Kme1 alignment set, columns 45 and 263 have
the highest MI value (2.18) of all residue pairs in the alignment.
These sites are non-coevolving. Calculating the information content,
I = log(20)+∑

a pa · log(pa), for each of the two residues clearly
demonstrates that the two sites are fast evolving (I45 = 0.17 and
I263 = 0.26). Introducing the low count correction, the MI value is
lowered to 0.91. The low count correction only gives minor changes
to the MI between slowly evolving residue pairs. An example of
this is the coevolving residue pair 287 and 288 in the multiple
alignment. These two residues have information content of 2.18
and 1.82, respectively, manifesting their slow rate of evolution. The
MI is 0.47. By introducing the low count correction, this value is
maintained at 0.50. In summary, for limited size MSAs, the use of
low count correction lowers the MI between fast evolving sites, and
maintains the MI between slowly evolving sites.

3.3 Biological data
Next, we investigated the performance of the different methods on
actual biological data. In this case, the knowledge of which residue
pairs are coevolving is not available to us. As an approximation, we
assumed that all residue pairs in contact (i.e. with a Cβ distance
<8 Å) are coevolving. This is naturally a wrong assumption since
many sites that are in contact are non-coevolving and many sites
that are coevolving are not necessarily in contact in the final folded
structure of the protein. However, the vast majority of coevolving
pairs can be assumed to be in contact, so this approach seems
reasonable when carrying out a comparable study of the performance
of different prediction methods. One should note that the actual
predictive performance of the different methods would most likely
be underestimated in such a benchmark.
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Table 2. Average AUC values for the different methods evaluated on the
families in the Dunn and Pfam datasets

Dunn Pfam

AUC AUC0.1 AUC AUC0.1

APC 0.700 0.218 0.723 0.259
APC-C 0.699 0.217 0.748 0.292
APC-Lc 0.712 0.224 0.730 0.261
APC-C-Lc 0.711 0.219 0.763 0.307
APC-C-Lc-Z seq 0.710 0.218 0.781 0.341
APC-C-Lc-Z col 0.698 0.206 0.768 0.315

Dunn refers to the 83 MSAs constructed by Dunn et al. (2008), and Pfam refers to the 85
Pfam families described in Section 2. AUC and AUC0.1 refer to the AUC corresponding
to the full dataset or those data falling in the 10% lowest false positive rates. The methods
included in the benchmark are: APC, C is clustering, Lc is low count correction with
λ = 0.05, and Z seq and Z col are the sequence- and column-based Z-score sequence
permutation described in the text. The best performing method for each benchmark
dataset is highlighted in bold.

We tested the methods in three datasets, one constructed by Dunn
et al. (2008), one built from Pfam and a third with a narrower set
of five selected protein families to illustrate the procedure a user
will perform using a Blast search (for details on the dataset, see
Section 2).

For each protein family, we calculated the MI between each
residue pair in the target sequence that is present in >50% of the
sequences in the MSA. Next, for each prediction method, we used
the 8 Å contact classification to calculate an AUC value for each
of the proteins. The result of this calculation is shown in Table 2
for the Dunn and Pfam datasets. AUC values should be interpreted
with caution when the dataset is highly unbalanced, due to the large
number of negative values. In those cases, one should focus on
the region of the ROC curve with low false positive rate, which is
often of prime interest. For clarity, we only include the APC method
combined with sequence clustering and/or low count correction.

For the Dunn set, it is clear that the sequence clustering has
very limited effect on the predictive performance. This is to
be expected since this dataset has been preprocessed to remove
sequence redundancy. The Pfam dataset is in that respect unbiased,
and here it is apparent that both clustering and low count
correction has strong impact on the performance values. For
the Pfam dataset, the sequence-based Z-score transformation led
to a significant improvement in the overall prediction accuracy
(P < 0.0001, binomial test). Moreover, did the sequence-based
permutation significantly outperform the column-based (P < 0.0001,
binomial test). This is a surprising result since the a priori expectation
as described earlier was that the column-based permutation test
would be most appropriate for the detection of MI. Due to the
low performance of the column-based permutation, we will in the
remaining part of the article use sequenced-based permutations only
to estimate Z-scores. It should be stressed that since the sequence-
based permutations do not test for the appropriate hypotheses, the
corresponding Z-scores should be interpreted with caution.

For the 75 Pfam families with >400 clusters, we further found that
the average sequence-based Z-score threshold defining a sensitivity
of 0.4 and a specificity of 0.95 was 6.5 ± 2.5.

Fig. 1. Average of predicted positive ratio as a function of predictions per
residue in a semi-log plot for the 85 MSA’s in the Pfam dataset. C, clustering
and Z , Z-score sequence-based permutation.

Fig. 2. Average AUC values (<AUC>) as a function of the number (#) of
clusters or sequences in the MSA from the Pfam dataset. For clusters, the
# refers to the definition by the Hobohm 1 algorithms using 62% sequence
identity. For sequences, the # refers to individual sequences from protein
families defined in the Pfam database. Performance values are calculated
using sequence-based Z-score permutations.

For datasets with a high ratio of negative values, an illustrative
manner to rank the predictive performance of different methods is
to plot the predicted positive ratio as a function of predictions per
residue on a log scale as the x-axis (Shackelford and Karplus, 2007).
Figure 1 shows the average of such curves for the 85 families in the
Pfam dataset for the five methods included in the benchmark. Again,
here we find the exact same ranking of the five methods, as found
using the AUC analysis.

The Pfam dataset is relatively large and covers a broad range of
family sizes (2000–10 000 proteins per family). This allowed us to
investigate to what extent the performance—in terms of the ability to
predict amino acid contacts—depends on the number of sequences in
the MSA and how this dependency is altered by the data redundancy.
The result of such analysis is shown in Figure 2, where the predictive
performance is displayed as a function of the number of sequences
and clusters, respectively, in the MSA. It is clear that the predictive
performance is strongly related to the number of clusters in the MSA,
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Table 3. Average AUC values for the different methods evaluated on the
five selected families taken as example

Method 1BMC 2TRX 1JWP 1O1N 1URE Ave

# Seq 4171 5614 2522 1824 481
# Cluster 2809 3227 980 429 121
APC 0.807 0.776 0.765 0.715 0.686 0.750
APC-Lc 0.815 0.778 0.768 0.715 0.704 0.756
APC-C 0.812 0.769 0.807 0.787 0.686 0.772
APC-C-Lc 0.820 0.771 0.814 0.789 0.722 0.783
APC-C-Lc-Z 0.814 0.776 0.812 0.791 0.729 0.785

The columns refer to the PDB code of the five different protein families included in
the benchmark. # Seq states the number of sequences in the MSA, # Cluster states the
number of clusters in the MSAs, as defined by the Hobohm 1 reduction (Hobohm et al.,
1992) at 62% sequence identity. Ave represents the average values across the different
protein families. The methods included in the benchmark are the same as those in
Table 2. The best performing method for each benchmark dataset is highlighted in bold.

and that MSAs with <400 clusters tend to show very low predictive
performance values (AUC < 0.75).

Next, we turn to the small set of five selected families analyzed
using the conventional Blast search program to build the MSAs. The
result of this analysis is shown in Table 3.

Also, for this small dataset is it apparent that the clustering
and correction for low count generally improve the predictive
performance. However, for some protein families, there is hardly any
gain obtained by applying correction for low counts and sequence
clustering (1BMC, 2TRX). Both these families are populated with
a very high number of diverse sequences (they both have more than
2800 sequence clusters), so it is expected that low count correction
will not play a major role for these families. It is also apparent
from the results in Table 3 that the accuracy of MI calculation
depends on the number of sequence clusters available. The protein
1URE represents a family with a very low number of clusters
(121), making accurate estimations of the 400 concurrent amino acid
frequencies rather uncertain. For the remaining two protein families
(1JWP and 1O1N), the number of clusters is sufficient to yield
accurate predictions, provided the calculation includes sequence
clustering and low count correction. One should bear in mind that
despite this being just an illustrative (user-oriented) test exercise on
limited size data, it confirms the results obtained using the Pfam
MSAs.

For the four protein families with a number of clusters >400
(all families except 1URE), we find an average Z-score threshold of
6.1 ± 1.1 defining a sensitivity of 0.4 and a specificity of 0.95. The
threshold value corresponds well with the value obtained earlier for
the Pfam dataset.

3.4 Mapping to a 3D structure: 2TRX as a case study
When mapping residue pairs for the 2TRX protein family onto the
3D structure, we found that 14 out of the 20 pairs with highest
Z-score values and a sequential distance greater than four residues
were interconnected forming a network around the conserved
catalytic cystein residues 32 and 35 in the active site of thioredixin
(Fig. 3). The pair of residues P34–A93, I60–A67, I60–I75, A67–I75
and P34–I75 are in direct sidechain contact (with a Cβ distance
<8 Å), whereas the other pairs, although not in direct contact

A

B

Fig. 3. (A) Ribbon representation of 2TRX. Represented as gold spheres, 14
of the 20 highest Z-score transformed MI scoring pairs of residues are shown.
Orange spheres: catalytic C32 and C35. Molecular graphic images were
generated using UCSF Chimera package (University of California; Meng
et al., 2006). (B) Schematic representation of the 14 pairs of interactions
scoring highest in Z-score transformed MI values. Red lines are high MI
scoring residue pairs. Full lines denote physical contact (Cβ distance <8 Å).

distance, all (with the exception of A22) are in contact with other
residues of the network. Due to the proximity to the active site of
the protein, the first large network might map residues of functional
(rather than structural) importance. Experimental studies would be
necessary to test this hypothesis.

Notably we have found that, in the five families of proteins chosen
for illustration belonging to different classes, networks are formed.
The extreme case is the 1JWP family of proteins, where 9 out of
the 10 highest scoring pairs are interconnected forming a network
and these nine pairs lie close in the 3D structure as well (they all
map to the β-hairpin formed between residues 99 and 115 of the
β-lactamase). This analysis demonstrates the power of the proposed
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MI approach to identify residue contacts and nets of interaction in
biological sequences.

4 DISCUSSION AND CONCLUSIONS
Here, we have compared two recently published approaches to
lessen the influence of phylogeny and signal noise into the
calculation of MI or coevolution between residues. Furthermore,
we have shown how including simple techniques of sequence
clustering and low count correction can significantly enhance the
estimation of MI between residue pairs. Large-scale benchmarking
including both artificial (in silico generated) and biological data
demonstrated that this improved method could be applied to
achieve accurate prediction of coevolving sites and contacts.
Our results demonstrate that raw MI was the worst predictor
of coevolution. The RCW method of Gouveia-Oliveira and
Pedersen (2007) outperformed MI. The APC background correction
method by Dunn et al. (2008) achieved the highest performance.
In this context, the inclusion of low count correction and
clustering was shown to improve all three methods. The best
performing method for both artificial and natural sequences was the
combination of APC correction, clustering and low count correction.
We demonstrated that Z-score transformation calculated from
sequence-based permutations significantly improved the prediction
accuracy of the method, and allows an interpretation of predictions
across different protein families. Further, we demonstrate how the
predictive performance of the method depends strongly on the
number of sequence clusters rather than the number of sequences in
the MSA, and those MSAs with <400 clusters tend to display very
low predictive performance values.

A direct correlation of MI to the degree of coevolution has been
shown to be extremely difficult. Tree-based evolution, phylogeny,
conservation and noise are important factors that make difficult
the identification of MI between residues. The usefulness of the
information deposited in an MSA is remarkable in the protein-
modeling field. During the last decade, many researchers have
intended to take advantage of this information. A method to
predict residues that coevolve may be a guide for assembling local
structure prediction into full tertiary prediction (Shackelford and
Karplus, 2007). Tertiary restraints derived from an MSA have been
incorporated into software for ab initio folding of proteins to provide
decoys closer to the native-like structure (Ortíz and Skolnick, 2000;
Ortíz, et al., 1998). In addition, estimation of MI might emerge
as an important tool for protein–protein interaction predictions
(Dunn et al., 2008; Fares and Travers, 2006; Ramani and Marcotte,
2003). Furthermore, an MI analysis can prove very useful to further
characterize protein structure or function and to guide the design of
mutagenesis studies.

Pairs of residues that show high MI values are often postulated
to coevolve and, in the vast majority of cases, they are assumed
to be close in space. While the assumption of spatial proximity of
coevolving residue pairs is appealing, it is apparent that residues
that coevolve are not necessarily close in contact or, conversely,
residues close in contact are not necessarily coevolving. One could
speculate that residues that are far away in the folded protein
structure might have been close in folding intermediates or might
share a common outside neighboring molecule, like another protein
or ligand. Lockless and Ranganathan (1999) have demonstrated both
theoretically and experimentally that statistically coupled residues

may be distantly positioned in the structure, and there are many
examples of allosterically interacting residues (Shi et al., 2006).

We illustrated on one particular protein family (thioredoxins), a
practical use of the proposed method to gain better understanding the
role of coevolution. Here, the high-scoring MI pairs were found to
order into a network or cluster of residues (Byung-Chul et al., 2008;
Korber, et al., 1993). This finding might bear general significance
for the understanding of protein structure and function.

The proposed method for MI calculation significantly filters the
signal from the noise, not only on artificial datasets, but also when
applied to biological data.
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